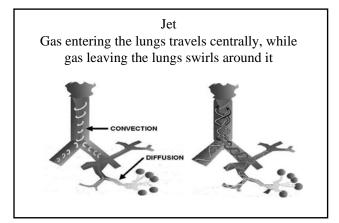

High Frequency Jet Ventilation and High Frequency Flow Interruption Differences in Comparison to High Frequency Oscillatory Ventilation

Donald M. Null, Jr., MD

Active Exhalation HFOV 	Passive Exhalation Jet HFFI

HFUV HFUV HFOV CH Breaths/min 60 120 600 1200 Hertz 1 2 10 20 HFPPV HFFF

Adjustable Variables in HFV							
<u>Ventilator</u>	Type	<u>dP/Vol</u>	Rate	<u>I Time</u>	Paw		
SM 3100A	HFO	Yes Yes	Yes	Ye	s		
PVDR	HFFI	Yes	Yes	Yes	No*		
Life Pulse	HFJ	Yes	Yes	Yes	No*		
					* via IMV PEEP		



Similarities and Differences between Ventilators

Bronchotron[®] I Patient Connector: Phasitron

- Used for both CMV & HFV
 - Sliding venturi
 - Peep valve
 - Entrainment port
 - Nitric Oxide ports

Active versus Passive Exhalation

- A. Air trapping
- B. Choke Points
- C. Inspiratory to expiratory ratios

Wave Form Production

Jet HFOV HFFI

Tidal Volume

Oscillator

- Decrease frequency increases tidal volume
- Increase amplitude increases tidal volume

HFFI

• Frequency changes similar to HFOV but less significant

HFJV tidal volume fixed not altered by rate

Mean Airway Pressure

Oscillator

- Obstruct outflow
- Minimally effected by amplitude or frequency

Mean Airway Pressure

Jet

• Combination of PEEP from conventional ventilator and PIP and rate

Mean Airway Pressure

HFFI

• PEEP plus PIP and rate

Oxygenation

- 1. FiO_2 same for all three
- 2. Mean Airway Pressure
 - A. Increasing Mean for inadequate lung expansion improves PaO_2 same for all three

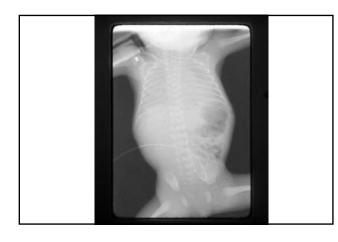
- Amplitude little effect on oxygenation unless
 A. Inadequate lung expansion
 - B. Non-homogenous lung disease

Same for HFO + HFFI; Jet uses conventional breaths for recruitment as increased amplitude has little to no effect on PaO_2

 Frequency – No effect unless too high and causes air trapping the PaO₂ decreases same for all three

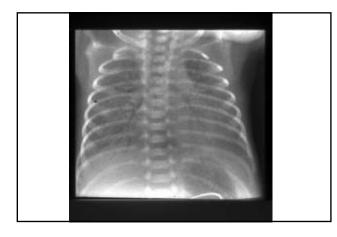
Ventilation

- 1. Amplitude/Tidal Volume Increasing will decrease PaCO₂ same for all three
- 2. Mean Airway Pressure No effect on Ventilation unless too low – same for all three
- Frequency Decreasing frequency increases PaCO₂ – same for HFJV, HFFI- PaCO₂ decreases with HFOV


Complications

Air Trapping HFJV – Breath stacking when IMV breaths used High rates typically lower than with HFOV or HFFI HFOV and HFFI - High rates typically ≥ 10 Hz with airway disease Choke point when mean airway pressure too low and amplitude too high > 3 to 1 Amp to PAW

Strategies for Clinical Management


Diffuse Alveolar Disease

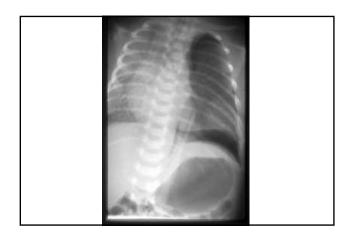
- Premature
- Mean airway pressure 1-2 cm H2O> CV
- Frequency 10-15 Hz HFOV HFFI
- 8-10 Hz Jet
- Delta pressure chest wall movement

Term/Near Term

- Mean airway pressure 2-4 cm H₂O > CV
- Frequency 8-10 Hz Jet 6-8 Hz
- Delta pressure chest wall movement

Air Leak

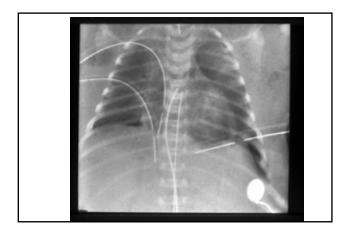
Premature:


- PIE
 - Mean airway pressure 1 cm H₂O < CV
 - Frequency 10-15 Hz, 8-10 Hz Jet
 - Delta pressure minimal chest wall movement

Premature

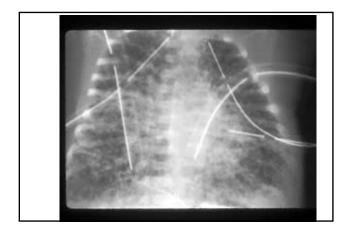
Gross air leak

- Mean airway pressure = or 1 cm H₂O > CV
- Frequency 10-15 Hz, 8-10 Hz Jet
- Delta pressure chest wall movement


Term/Near Term

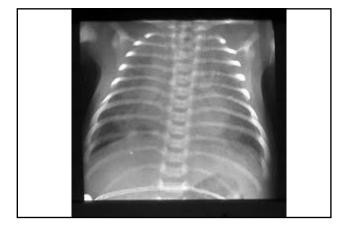
- Gross air leak generally poor inflation
- Mean airway pressure 1-2 cm H₂O > CV
- Frequency 8-10 Hz, same all 3
- Delta pressure chest wall movement

Term/Near Term


- Gross air leak adequate inflation
- Mean airway pressure = or 1 cm H₂O < CV
- Frequency 8-10 Hz, same all 3
- Delta pressure chest wall movement

Non-Homogeneous Lung Disease

• Meconium aspiration with air trapping


Mean airway pressure = to CV Frequency 6 - 8 Hz, same for HFFI HFJV typically uses addition of conventional breaths, rate 5-6 Hz Delta pressure - good chest wall movement

Non-Homogeneous Lung Disease

• Meconium aspiration diffusely hazy

Mean airway pressure 2-5 cm H₂O > CV Frequency 6-10 Hz, same HFJV and HFFI Delta pressure - good chest wall movement

